k^2=k=20

Simple and best practice solution for k^2=k=20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for k^2=k=20 equation:



k^2=k=20
We move all terms to the left:
k^2-(k)=0
We add all the numbers together, and all the variables
k^2-1k=0
a = 1; b = -1; c = 0;
Δ = b2-4ac
Δ = -12-4·1·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-1}{2*1}=\frac{0}{2} =0 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+1}{2*1}=\frac{2}{2} =1 $

See similar equations:

| 0.9a-2.6=1.7 | | 2(3x+4)-(x-3)=41 | | 4(h+2)=-20 | | 16x-9=-61 | | -2y+(-2)=11 | | (x-10)(x-10)=x2-20x+ | | (3x-4)+(2x+17)=180 | | -14x+3x+6x+5=180 | | -1/4(-1-20x)=5x-2 | | 3x+80=2x+20 | | 30=-4/15a+7 | | 14=12-y | | –7x+5–2x=–40 | | -213=p-187 | | 0.25(x)=-10 | | 3{x+7}-40=50 | | 7x+1+15=3X+1 | | 9x-3+x=17 | | 5y+68=3y+99 | | -5=-4/15a+7 | | 3x-5+4x=7x+3 | | 5x4-3+2(-1)=3 | | 6x=2/4 | | b/10=-3,6 | | 150x+7500=300 | | x*1=2 | | 5x+2+-6x=-x+2 | | y•y•y=60 | | (x+3)+3(x-1)=2 | | -6(x-4)+4=-2(x+2)+6 | | -20x+15=2-16x+7 | | 21+2x-5x=33 |

Equations solver categories